New Hampshire Volunteer Lake Assessment Program ## 2003 Interim Report for Highland Lake Andover NHDES Water Division Watershed Management Bureau 29 Hazen Drive Concord, NH 03301 ## Observations & Recommendations After reviewing data collected from **HIGHLAND LAKE**, **ANDOVER**, the program coordinators have made the following observations and recommendations: Thank you for your continued hard work sampling the lake this season! Your monitoring group sampled **three** times this season and has done so for many years! As you know, with multiple sampling events each season, we will be able to more accurately detect changes in water quality. Keep up the good work! #### FIGURE INTERPRETATION Figure 1 and Table 1: The graphs in Figure 1 (Appendix A) show the historical and current year chlorophyll-a concentration in the water column. Table 1 (Appendix B) lists the maximum, minimum, and mean concentration for each sampling season that the lake has been monitored through the program. Chlorophyll-a, a pigment naturally found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a, and are naturally found in lake ecosystems, the chlorophyll-a concentration measured in the water gives an estimation of the algal concentration or lake productivity. The mean (average) summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 7.02 ug/L. The current year data (the top graph) show that the chlorophyll-a concentration *decreased* from June to July, and then *increased* from July to August. The chlorophyll-a concentration on each sampling event was *less than* the state mean. Overall, visual inspection of the historical data trend line (the bottom graph) shows a **slightly decreasing** in-lake chlorophyll-a trend, which means that the concentration has **slightly improved** since monitoring began in 1987. In the 2004 annual report we will again conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean chlorophyll-a concentration since monitoring began. While algae are naturally present in all lakes, an excessive or increasing amount of any type is not welcomed. In freshwater lakes, phosphorus is the nutrient that algae depend upon for growth. Algal concentrations may increase with an increase in nonpoint sources of phosphorus loading from the watershed, or in-lake sources of phosphorus loading (such as phosphorus releases from the sediments). Therefore, it is extremely important for volunteer monitors to continually educate residents about how activities within the watershed can affect phosphorus loading and lake quality. Figure 2 and Table 3: The graphs in Figure 2 (Appendix A) show historical and current year data for lake transparency. Table 3 (Appendix B) lists the maximum, minimum and mean transparency data for each sampling season that the lake has been monitored through the program. Volunteer monitors use the Secchi-disk, a 20 cm disk with alternating black and white quadrants, to measure water clarity (how far a person can see into the water). Transparency, a measure of water clarity, can be affected by the amount of algae and sediment from erosion, as well as the natural colors of the water. The mean (average) summer transparency for New Hampshire's lakes and ponds is 3.7 meters. The current year data (the top graph) show that the in-lake transparency *increased* from June to July, and then *decreased* from July to August. The transparency in June was *slightly greater than* the state mean, and in July and August was *greater than* the state mean. It is important to point out that as the chlorophyll *decreased* from June to July, the transparency *increased*, and as the chlorophyll *increased* from July to August, the transparency *decreased*. We typically expect this *inverse* relationship in lakes. As the concentration of algal cells in the water *increases*, the ability for light to penetrate into the water *decreases* (and consequently the ability for one to see the Secchi disk in the water *decreases*) and vice-versa. Overall, visual inspection of the historical data trend line (the bottom graph) shows a **slightly variable** trend for in-lake transparency. Specifically, the mean annual transparency has ranged between approximately **4.0 and 5.5 meters** since monitoring began in 1987. As discussed previously, in the 2004 annual report we will again conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean transparency since monitoring began. Typically, high intensity rainfall causes erosion of sediments into lakes and streams, thus decreasing clarity. Efforts should continually be made to stabilize stream banks, lake shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake. Guides to Best Management Practices designed to reduce, and possibly even eliminate, nonpoint source pollutants, such as sediment loading, are available from DES upon request. Figure 3 and Table 8: The graphs in Figure 3 (Appendix A) show the amounts of phosphorus in the epilimnion (the upper layer) and the hypolimnion (the lower layer); the inset graphs show current year data. Table 8 (Appendix B) lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake has joined the program. Phosphorus is the limiting nutrient for plant and algae growth in New Hampshire's freshwater lakes and ponds. Too much phosphorus in a lake can lead to increases in plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 11 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L. The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration *increased* from July to August. The phosphorus concentration in July and August was *less than* the state median. (Please note that the phosphorus concentration in June was abnormally high and has been excluded from the data analysis.) The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration **increased very slightly** from June to July, and then **increased by a large amount** from July to August. The phosphorus concentration in June and July was **less than** the state median, while the concentration in August was **greater than** the state median. It is important to point out that the turbidity of the hypolimnion (lower layer) sample was **elevated** on the July (5.31 NTUs) and August (6.28 NTUs) sampling events. This suggests that the lake bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling. When the lake bottom is disturbed, sediment, which typically contains attached phosphorus, is released into the water column. When collecting the hypolimnion sample, please check to make sure that there is no sediment in the Kemmerer Bottle before filling the sample bottles. The historical data show that the 2003 mean hypolimnetic phosphorus concentration is **slightly less than** the state median. Overall, visual inspection of the historical data trend line for the epilimnion (upper layer) and the hypolimnion (lower layer) show a **variable** phosphorus trend since monitoring began. Specifically, the phosphorus concentration in the epilimnion and the hypolimnion has **fluctuated**, but has not continually increased or decreased, since monitoring began. One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about its sources and how excessive amounts can adversely impact the ecology and value of lakes and ponds. Phosphorus sources within a lake or pond's watershed typically include septic systems, animal waste, lawn fertilizer, road and construction erosion, and natural wetlands. #### **TABLE INTERPRETATION** #### > Table 2: Phytoplankton Table 2 (Appendix B) lists the current and historical phytoplankton species observed in the lake. The dominant phytoplankton species observed this year were *Asterionella* (a diatom), *Ceratium* (a dinoflagellate), and *Dinobryon* (a golden-brown algae). Phytoplankton populations undergo a natural succession during the growing season (Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession). Diatoms and golden-brown algae are typical in New Hampshire's less productive lakes and ponds. #### > Table 2: Cyanobacteria (Blue-green algae) Small amounts of the cyanobacterium Anabaena, Merismopedia, and Microcystis were observed in the plankton sample this season. These species, if present in large amounts, can be toxic to livestock, wildlife, pets, and humans. Cyanobacteria can reach nuisance levels when excessive nutrients and favorable environmental conditions occur. During September of 2003, a few lakes and ponds in the southern portion of the state experienced cyanobacteria blooms. This was likely due to nutrient loading to these waterbodies. As mentioned previously, many weeks during the Spring and Summer of 2003 were rainy, which likely resulted in a large amount of nutrient loading to surface waters. The presence of cyanobacteria serves as a reminder of the lake's delicate balance. Watershed residents should continue to act proactively to reduce nutrient loading into the lake by eliminating fertilizer use on lawns, keeping the lake shoreline natural, revegetating cleared areas within the watershed, and properly maintaining septic systems and roads. In addition, residents should also observe the lake in September and October during the time of fall turnover (lake mixing) to document any algal blooms that may occur. Cyanobacteria (blue-green algae) have the ability to regulate their depth in the water column by producing or releasing gas from vesicles. However, occasionally lake mixing can affect their buoyancy and cause them to rise to the surface and bloom. Wind and currents tend to "pile" cyanobacteria into scums that accumulate in one section of the lake. If a fall bloom occurs, please contact the VLAP Coordinator. #### > Table 4: pH Table 4 (Appendix B) presents the in-lake and tributary current year and historical pH data. pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 5.5 severely limits the growth and reproduction of fish. A pH between 6.5 and 7.0 is ideal for fish. The mean pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.5**, which indicates that the surface waters in state are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report. The mean pH at the deep spot this season ranged from **6.06** in the hypolimnion to **6.59** in the epilimnion, which means that the water is **slightly acidic.** When organic material near the lake bottom is decomposed, acidic byproducts are produced, which likely explains the lower pH (meaning higher acidity) in the hypolimnion. Due to the presence of granite bedrock in the state and the deposition of acid rain, there is not much that can be done to effectively increase lake pH. #### > Table 5: Acid Neutralizing Capacity Table 5 (Appendix B) presents the current year and historical epilimnetic ANC for each year the lake has been monitored through VLAP. Buffering capacity or ANC describes the ability of a solution to resist changes in pH by neutralizing the acidic input to the lake. The mean ANC value for New Hampshire's lakes and ponds is **6.7 mg/L**, which indicates that many lakes and ponds in the state are "highly sensitive" to acidic inputs. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report. The Acid Neutralizing Capacity (ANC) of the epilimnion (the upper layer) continues to remain *less than* the state mean. Specifically, the mean ANC this season was **5.57 mg/L**, which indicates that the lake is *highly sensitive* to acidic inputs (such as acid precipitation). #### > Table 6: Conductivity Table 6 (Appendix B) presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current. The mean conductivity value for New Hampshire's lakes and ponds is **62.1 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report. The conductivity in the lake is relatively **low** and **less than** the state mean. However, the conductivity has gradually **increased** in the lake and in the tributaries since monitoring began. Typically, sources of increased conductivity are due to human activity. These activities include septic systems that fail and leak leachate into the groundwater (and eventually into the tributaries and the lake), agricultural runoff, and road runoff (which contains road salt during the spring snow melt). New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could contribute to increasing conductivity. In addition, natural sources, such as iron deposits in bedrock, can influence conductivity. We recommend that your monitoring group a conduct stream survey and storm event sampling along the inlet(s) with elevated conductivity (in particular, **West Inlet**) so that we can determine what may be causing the increases. For a detailed explanation on how to conduct rain event and stream surveys, please refer to the 2002 VLAP Annual Report "Special Topic Article", or contact the VLAP Coordinator. #### > Table 8: Total Phosphorus Table 8 (Appendix B) presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. **Lower Maple Street Brook, Tilton Brook, West Inlet,** and the **Outlet** were sampled for phosphorus this season. The phosphorus concentration was *relatively low* in each sample, except for the **West Inlet** sample which was collected in July (51 ug/L). The turbidity of the July West Inlet sample was also *elevated* (5.7 NTUs) which suggests that the stream bottom may have been disturbed while sampling or that erosion is occurring in this portion of the watershed. When the stream bottom is disturbed, sediment, which typically contains attached phosphorus, is released into the water column. When collecting samples in the inlets, please be sure to sample where there the stream is flowing and where the stream is deep enough to collect a "clean" sample. If you suspect that erosion is occurring in this portion of the watershed, we recommend that your monitoring group conduct stream surveys and storm event sampling along this inlet. This additional sampling may allow us to determine what is causing the elevated levels of turbidity and phosphorus. For a detailed explanation on how to conduct rain event and stream surveys, please refer to the 2002 VLAP Annual Report "Special Topic Article", or contact the VLAP Coordinator. #### > Table 9 and Table 10: Dissolved Oxygen and Temperature Data Table 9 (Appendix B) shows the dissolved oxygen/temperature profile(s) for the 2003 sampling season. Table 10 (Appendix B) shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of dissolved oxygen is vital to fish and amphibians in the water column and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The dissolved oxygen concentration was *low in the hypolimnion* at the deep spot of the lake. As stratified lakes age, and as the summer progresses, oxygen becomes *depleted* in the hypolimnion (the lower layer) by the process of decomposition. Specifically, the loss of oxygen in the hypolimnion results primarily from the process of biological breakdown of organic matter (i.e.; biological organisms use oxygen to break down organic matter), both in the water column and particularly at the bottom of the lake where the water meets the sediment. When oxygen levels are depleted to less than 1 mg/L in the hypolimnion (as it was this season and in many past seasons), the phosphorus that is normally bound up in the sediment may be rereleased into the water column. #### > Table 11: Turbidity Table 11 (Appendix B) lists the current year and historical data for inlake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation. As discussed previously, the turbidity of the hypolimnion (lower layer) sample was *elevated* on the July and August sampling events, which suggests that the lake bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling. In addition, the turbidity in the **West Inlet** sample was elevated on the July sampling event which suggests that the stream bottom may have been disturbed while sampling or that erosion is occurring in this portion of the watershed. #### DATA QUALITY ASSURANCE AND CONTROL #### **Annual Assessment Audit:** During the annual visit to your lake, the biologist conducted a "Sampling Procedures Assessment Audit" for your monitoring group. Specifically, the biologist observed the performance of your monitoring group while sampling and filled out an assessment audit sheet to document the ability of the volunteer monitors to follow the proper field sampling procedures (as outlined in the VLAP Monitor's Field Manual). This assessment is used to identify any aspects of sample collection in which volunteer monitors are not following the proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions. Overall, your monitoring group did an **excellent** job collecting samples on the annual biologist visit this season! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work! #### Sample Receipt Checklist: Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if the volunteer monitors followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, future reoccurrences of improper sampling techniques. Overall, the sample receipt checklist showed that your monitoring group did an *excellent* job when collecting samples and submitting them to the laboratory this season! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the laboratory staff to contact your group with questions, and no samples were rejected for analysis. #### NOTES > Monitor's Note (6/3/03): Tilton Brook was high and fast running. Maple Street Inlet was fast running. **(7/9/03):** Low flow Maple St. Inlet (8/13/03): Observed 5 loons while sampling. Observed 6 geese at outlet. ▶ **Biologist's Note (6/3/03):** The phosphorous level in the epilimnion was unusually high. This could have been due to recent rains washing nutrients into the lake, or inadvertently sampling an algae clump. We will keep a close eye on this sample next month to note any trends. (7/9/03): The total phosphorous concentration in the West Inlet was elevated as was the turbidity. (8/13/03): The turbidity of the hypolimnion (lower layer sample) was elevated. #### **USEFUL RESOURCES** Acid Deposition Impacting New Hampshire's Ecosystems, ARD-32, NHDES Fact Sheet, (603) 271-3505, or www.des.state.nh.us/factsheets/ard/ard-32.htm. Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, NHDES-WD 97-8, NHDES Booklet, (603) 271-3503. Camp Road Maintenance Manual: A Guide for Landowners. KennebecSoil and Water Conservation District, 1992, (207) 287-3901. Comprehensive Shoreland Protection Act, RSA 483-B, WD-SP-5, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/sp/sp-5.htm. Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, NHDES Fact Sheet, (603) 271-3505, or www.des.state.nh.us/factsheets/wmb/wmb-10.htm. Erosion Control for Construction in the Protected Shoreland Buffer Zone, WD-SP-1, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/sp/sp-1.htm Impacts of Development Upon Stormwater Runoff, WD-WQE-7, NHDES Fact Sheet, (603) 271-3503, or www.des.state.nh.us/factsheets/wqe/wqe-7.htm Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, WD-BB-9, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-9.htm. Management of Canada Geese in Suburban Areas: A Guide to the Basics, Draft Report, NJ Department of Environmental Protection Division of Watershed Management, March 2001, www.state.nj.us/dep/watershedmgt/DOCS/BMP_DOCS/Goosedraft.pdf. Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, WD-SP-2, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/sp/sp-2.htm. Road Salt and Water Quality, WD-WMB-4, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/wmb/wmb-4.htm. Sand Dumping - Beach Construction, WD-BB-15, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-15.htm. Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, WD-BB-4, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-4.htm. ## APPENDIX A **GRAPHS** ### Highland Lake, Andover Figure 1. Monthly and Historical Chlorophyll-a Results ## Highland Lake, Andover